Data Compression techniques e Sep 2015 e Formula based approach to Arithmetic Coding e Rev. 2

A formula based approach to
Arithmetic Coding

ARUNDALE RAMANATHAN

Siara Logics (cc)

arun@siara.cc

Abstract

The Arithmetic Coding process involves re-calculation of intervals for each symbol that need to be encoded. This
article discovers a formula based approach for calculating compressed codes and provides proof for deriving the formula
from the usual approach. A spreadsheet is also provided for verification of the approach. Consequently, the similarities
between Arithmetic Coding and Huffman coding are also visually illustrated.

This article presents a formula based approach
to Arithmetic Coding. It also explains the math-
ematical foundation of Arithmetic Coding from a
radically different perspective.

This article discovers a formula based approach
for calculating compressed codes and provides
proof for deriving the formula from the usual ap-
proach.

Using a spreadsheet, the new approach is
demonstrated by compressing and decompressing
a simple string ("Hello World"). Compression using
conventional approach is also demonstrated in the
same spreadsheet. It can be seen that the same com-
pressed value is obtained using both the methods.

Simply put, the spreadsheet compresses the
string "Hello World" having length 11 letters to a 4
byte value 2166290293 (31.298 bits to be more exact).

Radix (logarithmic) is taken as 2 in this article,
but any radix can be used.

I Known facts

The basic principles of Arithmetic Coding are ex-
plained well in [2].

Referring to section Example in this article [3],
for a given input string A, with N symbols (letters)
and 7 unique symbols,

e if each unique symbol is represented as g;,
i being the index of symbol after sorting by
descending order of weights,

e if each symbol appears k; times,

e if weights (or probability) of each symbol is
given by w; = k; / N,

we know:

o the length (in bits) of optimal possible code for
symbol a; is —log, (w;) bits, referred as h(a;).

o the total compressed length L will be
Z —kilogs (w;) or Zkh) bits.

IT This work

The formula for h(a;) has been known for several
decades [1]. If this indicates the length of the com-
pressed code (in bits), what is the value contained
in that length?

Surely it cannot be all Os or all 1s, in which case
the compressed value will simply be 0 or 1. Also, it
cannot also take any arbitrary value, as there could
be more than one symbol having the same com-
pressed length. So the value is distinct and specific
for each symbol. Let us call this value as v(a;).

If the formula for this value could be discov-
ered, it would be simply a matter of concatenating
lengths of values to obtain the code, without hav-
ing to recalculate the intervals for each symbol, as
required in the common approach.

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 (© Siara Logics (cc) 1

http://siara.cc
mailto:arun@siara.cc
http://siara.cc

Data Compression techniques e Sep 2015 e Formula based approach to Arithmetic Coding e Rev. 2

IIT Formulae

i1
o(a;) = (ij)/ki, Vi>1, v(a;) =0.
=1
3 i h(A[f
compressed_value =Y | (U(A[ﬂ)/zzjzl ([l]))
i=1

IV Proof (derivation)

We derive the formula from the common approach,
which slices the interval according to the weights
w;. So for coding any symbol 4;, the following value

is used:
i—1
code_value; = Z(w] « interval_length)
=1
Vi > 1. code_value; would be 0.

When we use interval as 0 to 1, interval_length
is equal to 1, so it becomes:

i1
code_value; =) w;
=1
Vi > 1. code_value; would be 0.

However, since we have taken the interval as 0
to 1, the value is a fraction and we have to scale it
to get the value we are seeking. The length of this
value is h(a;) bits, so we shift it left as follows to
get the desired value:

i—1
o(a;) = (X wy) 2"
j=1

i—1
w]) * 2710g2(wi)

i—1
= v(a;) = () w,) »2ls2(1/w)
i=1

= o(a;) = (L (ki/N))/(ki/N)

i—1
~o(a) = (L k) /K
j=1

For all above statements, i > 1 and v(aq) is al-
ways 0.

For the above derivation, any interval could be
used as long as h(a;) is then right aligned to 0. For
example, if we use an interval of 0 to 4294967296
(2%2), the value would have to be shifted right by
32 — h(ai).

If interval_end is expressed in terms of powers
of 2, say 2%, then the value should be right shifted
by x — h(a;). Note that when interval is 0 to 1,
interval_end = 20 (x=0).

V Application to other coding
methods

The same formulae and approach are applicable
to other coding methods such as Huffman coding,
Shannon-Fano coding where length and value are
available. The only difference is that length would
be a natural number in these cases.

Once the codes for symbols are obtained using
the respective methods, the Frequencies need to be
re(verse)-calculated according to the code lengths
(ki = 27@) ¥ N)). Then, the formulas can be ap-
plied to obtain the compressed value. This is shown
in a separate sheet (Huffman_coding).

A picture for visual comparison between Arith-
metic Coding and Huffman Coding is given under
the example section below (Fig. [3).

VI Example
Given A = "Hello World”, then
e N=11,n=38,

e a="T,a="0,a3="H,a4="¢,a5="", a6 =
"W, ay; ='t’,ag ='d’, and

e k1=3,ky=2kztokg=1

e wy =0.2727 (3/11), w, = 0.1818 (2/11), w5 to
wg = 0.0909 (1/11)

then

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 (© Siara Logics (cc) 2

http://siara.cc

Data Compression techniques e Sep 2015 e Formula based approach to Arithmetic Coding e Rev. 2

e i(ay) = 1.8745, h(ay) = 2.4594, h(a3) to h(ag) o compressed_value = 2166290392.64712
= 3.4594, and (0.50437878646122 unscaled)

o [=31.2989

which means after compression, 11 bytes will The detailed calculations can be seen in the

become 31.2989 bits (around 4 bytes). By applying spreadsheet (Fig. ,

the formulas, we get: The following picture visually shows placement

e v(a;) =0, v(ap) = 1.5, v(ag) =5, v(ag) = 6, of letters in compressed value for both Arithmetic
v(as) =7,v(ag) =8, v(ay) =9, v(ag) =10 and Huffman coding:

Comparing Arithmetic coding with Huffman coding

Input String ("Hello World") in binary

H e | |
o: 1: 0: o 1: 0: 0: o] 0: 1: 1: 0: 0: 1: 0: 1] 0: 1: 1: 0: 1: 1: 0: o] 0: 1: 1: 0: 1: 1: 0: 0]
byte 1 (decimal 72) byte 2 (decimal 101) byte 3 (decimal 108) byte 4 (decimal 108)
o <spc> W o
Lo: 1: 1: 0: 1: 1: 1: 1] 0:; 0: 1: 0; 0: ©O; 0: o] o: 1: o; 1: o0; 1: 1: 1] 0: 1: 1: 0: 1: 1: 1: 1]
byte 5 (decimal 111) byte 6 (decimal 32) byte 7 (decimal 87) byte 8 (decimal 111)
r 1 d
Lo: 1: 1: 1: 0: 0: 1: o] 0: 1: 1: 0: 1: 1: 0: O] 0: 1: 1: 0: 0: 1: 0: 0]
byte 9 (decimal 114) byte 10 (decimal 108) byte 11 (decimal 100)

Compressed output in binary with Arithmetic coding

value: 5 6 0 0 1.5 7 8 1.5 9 0 10
length: 3.5 bits 3.5 bits i1.8 biti1.8 biti 2.4 bits 3.5 bits 3.5 bits 3.5 bits 3.5 bits 1.8 biti 3.5 bits
letters: H e | | [+) <spc> W o r 1 d
bits: 1: 0: O0: O: O: O: O: 1] O: O: O: 1: 1: 1: 1: Of 1: 1: 1: 1: O: 1: 1: 1] 1: 1: O: 1: 1: O: O: 1
byte 1 byte 2 byte 3 byte 4
Compressed value = 2166290392.647, length = 31.3 bits

Compressed output in binary with Huffman coding

value: 3 4 0 0 2 5 6 2 14 0 15
length: 3 bits 3 bits 2 bits § 2 bits 3 bits 3 bits 3 bits 3 bits 4 bits 2 bits 4 bits
letters: H e 1 1] <spc> wW] r 1 d
bits: 0! 1: 1: 1: O: O: 0! O] O:! O: O: 1: O: 1: O:! 1] 1: 1: O: O! 1: O¢f 1: 1] 1: O! O: O! 1! 1: 1! 1
byte 1 byte 2 byte 3 byte 4
Compressed value = 1880476559, length = 32 bits

To read full article, visit: http://siara.cc/arithmetic_coding_new_approach/

Copyright (c) 2015 Siara Logics (cc) - http://siara.cc
Licensed under Creative Commons 4.0 International License (http://creativecommons.org/licenses/by/4.0/) 3

Figure 1: Visual indication of symbol positions in compressed value

The values are the same as those shown in the example spreadsheets. A screenshot of the spreadsheets
are also given in the Appendix.

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 (© Siara Logics (cc) 3

http://siara.cc

Data Compression techniques e Sep 2015 e Formula based approach to Arithmetic Coding e Rev. 2

VII Conclusion

The current work simplifies the encoding process
and explains Arithmetic coding in simpler terms.
However, for practical implementations, the follow-
ing points need to be considered:

e The formula based approach would heavily
depend on the performance of exp2 function.
It is likely to be slower than calculating the
interval table for each symbol. Very little re-
search has been done on this aspect.

e While the interval based approach does not al-
low parallel processing [1]], the formula based
approach would allow parallel processing.

Till the answers to the above points are available,
this work presently serves the following purposes:

e Understand Arithmetic Coding from a differ-
ent perspective

e Visualize positions of compressed symbols

e Visually compare Arithmetic coding and Huff-
man coding

e Precursor for further research on entropy cod-
ing

References

[1] Paul G. Howard and Jeffrey Scott Vitter, Practi-
cal Implementations of Arithmetic Coding, Brown
University, April 1992.

[2] Wikipedia, Arithmetic Coding,
https:/ /en.wikipedia.org/wiki/ Arithmetic_coding,
September 2015.

[3] Wikipedia, Huffman Coding,
https:/ /en.wikipedia.org/wiki/Huffman_coding,
August 2015.

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 (© Siara Logics (cc) 4

http://siara.cc

Data Compression techniques e Sep 2015 e Formula based approach to Arithmetic Coding e Rev. 2

VIII Appendix

Formula based approach to Arithmetic Coding

Frequency Table:

Compression:

. Frequency Weights Bit length Total bit length A
L:':;TJ[:” {Letter {probability) [h{ai) = {Letter Count x [\‘I,a(:‘il;!] L(::":;r:'g':')t I:ee[:;a:
count) [ki] [wi = ki / N] -log(wi)] Bit length)
| 3| 0.27272727272727| 1.87446911791614 5.62340735374842 0 [l
o] 2| 0.18181818181818 2.4594316186373| 4.91886323727459 1.5] 1171354717|0
H 1] 0.09090902090909 3.4594316186373 3.4594316186373 5] 1952257862 |H
e 1| 0.09090909090909 3.4594316186373 3.4594316186373 6| 2342709434|e
1| 0.09090909090909 3.4594316186373 3.4594316186373 7| 2733161007
W 1] 0.09090902090909 3.4594316186373 3.4594316186373 8| 3123612579|W
r 1] 0.09090909090909 3.4594316186373 3.4594316186373 9| 3514064151|r
d 1| 0.09090909090909 3.4594316186373 3.4594316186373 10| 3904515724(d
Count [N]: 11 Compressed length [L] (in bits) 31.2988603028468

Letter Value | Bit length [h(ai}] | Bits Remaining [Compressed value
{from frequency table) 32

H 5 3.4594316186373 | 28.5405683813627 1952257861.81818
e 6 3.4594316186373 | 25.0811367627254 2165231446.7438
| 0 1.87446911791614 | 23.2066676448093 2165231446.7438
| 0 1.87446911791614 | 21.3321985268931 2165231446.7438
o 1.5 2.4594316186373 | 18.8727669082558 2165951492.6733
7 3.4594316186373 | 15.4133352896185 2166256966.704

W 8 3.4594316186373 | 11.9539036709812 2166288704.26563
o 1.5 2.4594316186373 | 9.49447205234394 2166289786.22796
r 9 3.4594316186373 | 6.03504043370664 2166290376.38923
| 0 1.87446911791614 | 4.1605713157905 2166290376.38923
d 10 3.4594316186373 0.7011396971532 |2166290392.64712

Letters are looked up -->
using compressed value -->

Usually a terminator is required
when implementing for real life
compression. But it is not shown
in this example

<-- Final Compressed Value

To compress [A]: Hello World
Logarithm radix: 2
No of bits:
Total Value:

32
4294967296

Decompression:
Letter Bits

{from F29)
H 3.459432| 2166290393
e 3.459432|2354357839.12
|

|

o

1.874469128132454.301
1.874469 |469818999.104
2.459432]1722669663.38
3.459432| 3032232204.6
W 3.459432| 3289783178.6
o 2.459432]1827876596.61
v
|
d

3.459432|3610870337.37
1.874469[1064868047.07
3.459432|3904516172.58

Arithmetic coding by conventional method:

Lookup table for Interval (recalculated after compressing each letter)

Total letter count: 11 Letter Count --> 3 2 1 1 1 1 1 1
Probability -->]0.27273]|0.18181818|0.09091|0.09091(0.09091| 0.09091(0.09091| 0.090909091
Compression: Letters -->|I o H e w r d
Interval begin Interval end Interval length 1 o H e W r d
1]Initial interval 0 1 1 0] 0.272727273]0.454545(0.5454550.636364| 0.727273(0.818182]0.90909090909 1
2|H 0.45454545454545| 0.54545454545455 0.09090909090909}0.454545] 0.479338843(0.495868]0.504132]0.512397| 0.520661)0.528926[0.53719008264 | 0.47934
3le 0.50413223140496| 0.51239669421488 0.00826446280992]0.504132| 0.506386176(0.507889| 0.50864|0.509391| 0.510143]0.510894[0.51164537941 0.50639
4]l 0.50413223140496| 0.50638617580766 0.0022539444027]0.504132| 0.504746944]0.505157]0.505362 [0.505567| 0.505771]0.5059760.50618127177| 0.50475)
5|1 0.50413223140496| 0.50474694351479 0.00061471210983}0.504132| 0.504299880(0.504412]0.504468|0.504523| 0.504579]0.504635| 0.5046910606(0.5043
6)o 0.50429988016218| 0.50441164600034 0.00011176583815] 0.5043] 0.504330362|0.504351{0.504361]0.504371] 0.504381]0.504391 |0.50440148547| 0.50433
7 0.50437100387737| 0.50438116440811]1.016053074099E—05]0.504371] 0.504373775]0.504376]0.504377(0.504377] 0.504378[0.504379]0.50438024072| 0.50437|
8|W 0.50437839335427| 0.504379317038899.236846127969E—07]0.504378| 0.504378645]0.504379]0.504379(0.504379| 0.504379]0.504379]0.50437923307 | 0.50438|
9]o 0.50437864526826| 0.50437881321092|1.679426568924E—07]0.504379] 0.5043786910.504379]0.504379(0.504379] 0.504379[0.504379]0.50437879794| 0.50438|
10r 0.50437878267589 0.5043787979434]1.526751425285E—-08]0.504379 0.504378787]0.504379]0.504379)0.504379 0.504379]0.504379]0.50437879656| 0.50438|
111 0.50437878267589| 0.50437878683976|4.163867473039E—09]0.504379] 0.504378784]0.504379]0.504379(0.504379] 0.504379{0.504379]0.50437878646| 0.50438)
12]d 0.5043787864612

Compressed value:

Scale to len [L] in F14:

0.5043787864612

2166290392.6471 <-- Compare with above method (F29)

Licens

Copyright (c) 2015 Siara Logics {cc) - http://siara.cc

Creative Commons 4.0 International (http://creativecommons.org/licenses/by/4.0/)

Figure 2: Screenshot of spreadsheet that demonstrates both methods of Arithmetic Coding

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 (© Siara Logics (cc)

http://siara.cc

Data Compression techniques e Sep 2015 e Formula based approach to Arithmetic Coding e Rev. 2

Comparison with Huffman Coding

Frequency Table:

Copyright (c) 2015 Siara Logics (cc) - http://siara.cc

Licensed under Creative Commons 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

. Frequency Weights Bit Ien_gth [h(ai)] Total bit o Frec_|uency
Umque_ (Letter (probability) _(copued from_ length (Let!:er Vallfe Lower limit| Repeat [ki] re- Huffman
Letter [ai] . N . binary tree built Count x Bit [[v(ai)]| (of range) | Letter |calculated Code
count) [kil| [wi = ki / N] i
elsewhere) length) from h(ai)
| 3] 0.27272727273 2 6 0 ol 2.75|00
o 2)0.18181818182 3 6 2| 1073741824|0 1.375]|010
H 1| 0.09090909091 3 3 3| 1610612736|H 1.375]|011
e 1| 0.09090909091 3 3 4| 2147483648|e 1.375]100
1| 0.09090909091 3 3 5| 2684354560 1.375]|101
W 1| 0.09090909091 3 3 6| 3221225472|W 1.375]110
r 1| 0.09090909091 4 4 14| 3758096384 |r 0.6875]1110
d 1] 0.09090909091 4 4 15| 4026531840|d 0.6875]1111
Count [N]: 11 Compressed len [L] (in bits): 32 11
Compression:
Letter Value Bit Ier.\gth Bits Remaining Compressed
[h(ai)l value
(from frequency table) 32
H 3 3 29 1610612736 Letters are looked up -->
e 4 3 26 1879048192 using compressed value -->
| 0 2 24 1879048192
| 0 2 22 1879048192
[2 3 19 1880096768 Usually a terminator is required
5 3 16 1880424448 when implementing for real life
W 6 3 13 1880473600 compression. But it is not shown
o 2 3 10 1880475648 in this example
r 14 4 6 1880476544
| 0 2 4 1880476544
d 15 4 0 1880476559 <-- Final Compressed Value

Given string [Al: Hello World
Logarithm Radix: 2
No of bits: 32
Total Value: 4294967296
Decompression:
Letter Bits Remaining
(from F29)
H 3|1880476559
e 3| 2158910584
| 2 91415488
| 2| 365661952
0 3| 1462647808
3| 3111247872
W 3| 3415146496
] 3| 1551368192
r 4| 3821010944
| 2| 1006632960
d 4| 4026531840

To read full article visit:
http://siara.cc/arithmetic_coding_new_approach/

Figure 3: Screenshot of spreadsheet that demonstrates compression using Huffman codes by the same formula

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 (© Siara Logics (cc)

6

http://siara.cc

	Known facts
	This work
	Formulae
	Proof (derivation)
	Application to other coding methods
	Example
	Conclusion
	Appendix

