
Data Compression techniques • Sep 2015 • Formula based approach to Arithmetic Coding • Rev. 2

A formula based approach to
Arithmetic Coding

Arundale Ramanathan

Siara Logics (cc)
arun@siara.cc

Abstract

The Arithmetic Coding process involves re-calculation of intervals for each symbol that need to be encoded. This
article discovers a formula based approach for calculating compressed codes and provides proof for deriving the formula
from the usual approach. A spreadsheet is also provided for verification of the approach. Consequently, the similarities
between Arithmetic Coding and Huffman coding are also visually illustrated.

This article presents a formula based approach
to Arithmetic Coding. It also explains the math-
ematical foundation of Arithmetic Coding from a
radically different perspective.

This article discovers a formula based approach
for calculating compressed codes and provides
proof for deriving the formula from the usual ap-
proach.

Using a spreadsheet, the new approach is
demonstrated by compressing and decompressing
a simple string ("Hello World"). Compression using
conventional approach is also demonstrated in the
same spreadsheet. It can be seen that the same com-
pressed value is obtained using both the methods.

Simply put, the spreadsheet compresses the
string "Hello World" having length 11 letters to a 4
byte value 2166290293 (31.298 bits to be more exact).

Radix (logarithmic) is taken as 2 in this article,
but any radix can be used.

I Known facts

The basic principles of Arithmetic Coding are ex-
plained well in [2].

Referring to section Example in this article [3],
for a given input string A, with N symbols (letters)
and n unique symbols,

• if each unique symbol is represented as ai,
i being the index of symbol after sorting by
descending order of weights,

• if each symbol appears ki times,

• if weights (or probability) of each symbol is
given by wi = ki / N,

we know:

• the length (in bits) of optimal possible code for
symbol ai is −log2(wi) bits, referred as h(ai).

• the total compressed length L will be
n

∑
i=1
−kilog2(wi) or

n

∑
i=1

kih(ai) bits.

II This work

The formula for h(ai) has been known for several
decades [1]. If this indicates the length of the com-
pressed code (in bits), what is the value contained
in that length?

Surely it cannot be all 0s or all 1s, in which case
the compressed value will simply be 0 or 1. Also, it
cannot also take any arbitrary value, as there could
be more than one symbol having the same com-
pressed length. So the value is distinct and specific
for each symbol. Let us call this value as v(ai).

If the formula for this value could be discov-
ered, it would be simply a matter of concatenating
lengths of values to obtain the code, without hav-
ing to recalculate the intervals for each symbol, as
required in the common approach.

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 c© Siara Logics (cc) 1

http://siara.cc
mailto:arun@siara.cc
http://siara.cc

Data Compression techniques • Sep 2015 • Formula based approach to Arithmetic Coding • Rev. 2

III Formulae

v(ai) = (
i−1

∑
j=1

k j)/ki , ∀ i > 1, v(a1) = 0.

compressed_value =
N

∑
i=1

(
v(A[i])/2∑i

j=1 h(A[j])
)

IV Proof (derivation)

We derive the formula from the common approach,
which slices the interval according to the weights
wi. So for coding any symbol ai, the following value
is used:

code_valuei =
i−1

∑
j=1

(wj ∗ interval_length)

∀ i > 1. code_value1 would be 0.

When we use interval as 0 to 1, interval_length
is equal to 1, so it becomes:

code_valuei =
i−1

∑
j=1

wj

∀ i > 1. code_value1 would be 0.

However, since we have taken the interval as 0
to 1, the value is a fraction and we have to scale it
to get the value we are seeking. The length of this
value is h(ai) bits, so we shift it left as follows to
get the desired value:

v(ai) = (
i−1

∑
j=1

wj) ∗ 2h(ai)

⇒ v(ai) = (
i−1

∑
j=1

wj) ∗ 2−log2(wi)

⇒ v(ai) = (
i−1

∑
j=1

wj) ∗ 2log2(1/wi)

⇒ v(ai) = (
i−1

∑
j=1

wj) ∗ (1/wi)

⇒ v(ai) = (
i−1

∑
j=1

wj)/wi

⇒ v(ai) =
(i−1

∑
j=1

(k j/N)
)

/(ki/N)

∴ v(ai) = (
i−1

∑
j=1

k j)/ki

For all above statements, i > 1 and v(a1) is al-
ways 0.

For the above derivation, any interval could be
used as long as h(ai) is then right aligned to 0. For
example, if we use an interval of 0 to 4294967296
(232), the value would have to be shifted right by
32− h(ai).

If interval_end is expressed in terms of powers
of 2, say 2x, then the value should be right shifted
by x − h(ai). Note that when interval is 0 to 1,
interval_end = 20 (x=0).

V Application to other coding
methods

The same formulae and approach are applicable
to other coding methods such as Huffman coding,
Shannon-Fano coding where length and value are
available. The only difference is that length would
be a natural number in these cases.

Once the codes for symbols are obtained using
the respective methods, the Frequencies need to be
re(verse)-calculated according to the code lengths
(ki = 2−h(ai) ∗ N). Then, the formulas can be ap-
plied to obtain the compressed value. This is shown
in a separate sheet (Huffman_coding).

A picture for visual comparison between Arith-
metic Coding and Huffman Coding is given under
the example section below (Fig. 3).

VI Example

Given A = ”Hello World”, then

• N = 11, n = 8,

• a1 = ’l’, a2 = ’o’, a3 = ’H’, a4 = ’e’, a5 = ’ ’, a6 =
’W’, a7 = ’r’, a8 = ’d’, and

• k1 = 3, k2 = 2, k3 to k8 = 1

• w1 = 0.2727 (3/11), w2 = 0.1818 (2/11), w3 to
w8 = 0.0909 (1/11)

then

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 c© Siara Logics (cc) 2

http://siara.cc

Data Compression techniques • Sep 2015 • Formula based approach to Arithmetic Coding • Rev. 2

• h(a1) = 1.8745, h(a2) = 2.4594, h(a3) to h(a8)
= 3.4594, and

• L = 31.2989

which means after compression, 11 bytes will
become 31.2989 bits (around 4 bytes). By applying
the formulas, we get:

• v(a1) = 0, v(a2) = 1.5, v(a3) = 5, v(a4) = 6,
v(a5) = 7, v(a6) = 8, v(a7) = 9, v(a8) = 10

• compressed_value = 2166290392.64712
(0.50437878646122 unscaled)

The detailed calculations can be seen in the
spreadsheet (Fig. 2).

The following picture visually shows placement
of letters in compressed value for both Arithmetic
and Huffman coding:

Figure 1: Visual indication of symbol positions in compressed value

The values are the same as those shown in the example spreadsheets. A screenshot of the spreadsheets
are also given in the Appendix.

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 c© Siara Logics (cc) 3

http://siara.cc

Data Compression techniques • Sep 2015 • Formula based approach to Arithmetic Coding • Rev. 2

VII Conclusion

The current work simplifies the encoding process
and explains Arithmetic coding in simpler terms.
However, for practical implementations, the follow-
ing points need to be considered:

• The formula based approach would heavily
depend on the performance of exp2 function.
It is likely to be slower than calculating the
interval table for each symbol. Very little re-
search has been done on this aspect.

• While the interval based approach does not al-
low parallel processing [1], the formula based
approach would allow parallel processing.

Till the answers to the above points are available,
this work presently serves the following purposes:

• Understand Arithmetic Coding from a differ-
ent perspective

• Visualize positions of compressed symbols

• Visually compare Arithmetic coding and Huff-
man coding

• Precursor for further research on entropy cod-
ing

References

[1] Paul G. Howard and Jeffrey Scott Vitter, Practi-
cal Implementations of Arithmetic Coding, Brown
University, April 1992.

[2] Wikipedia, Arithmetic Coding,
https://en.wikipedia.org/wiki/Arithmetic_coding,
September 2015.

[3] Wikipedia, Huffman Coding,
https://en.wikipedia.org/wiki/Huffman_coding,
August 2015.

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 c© Siara Logics (cc) 4

http://siara.cc

Data Compression techniques • Sep 2015 • Formula based approach to Arithmetic Coding • Rev. 2

VIII Appendix

Figure 2: Screenshot of spreadsheet that demonstrates both methods of Arithmetic Coding

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 c© Siara Logics (cc) 5

http://siara.cc

Data Compression techniques • Sep 2015 • Formula based approach to Arithmetic Coding • Rev. 2

Figure 3: Screenshot of spreadsheet that demonstrates compression using Huffman codes by the same formula

Licensed under Creative Commons 4.0 Int’l Attribution License, Copyright 2015 c© Siara Logics (cc) 6

http://siara.cc

	Known facts
	This work
	Formulae
	Proof (derivation)
	Application to other coding methods
	Example
	Conclusion
	Appendix

